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Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes
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The effects of impurities and local structural defects on the conductance of metallic carbon nanotubes
are calculated using an ab initio pseudopotential method within the Landauer formalism. Substitutionally
doped boron or nitrogen produces quasibound impurity states of a definite parity and reduces the con-
ductance by a quantum unit �2e2�h� via resonant backscattering. These resonant states show strong simi-
larity to acceptor or donor states in semiconductors. The Stone-Wales defect also produces quasibound
states and exhibits quantized conductance reduction. In the case of a vacancy, the conductance shows a
much more complex behavior than the prediction from the widely used p-electron tight-binding model.

PACS numbers: 72.80.Rj, 71.15.Hx, 73.61.Wp
Carbon nanotubes, a new structural form of carbon
discovered by Iijima [1], have great potential for nanoscale
electronic device applications because of their extraordi-
narily small diameter and versatile electronic properties
[2–4]. Their conducting characteristics have been studied
extensively. The conductance of a one-dimensional
conductor is known to have an especially simple form
according to Landauer’s formula, namely, the number of
conducting channels (two, at the Fermi level in the case
of single wall nanotubes) times the conductance quantum,
G0 � 2e2�h [5]. This quantized conductance would be
changed in the presence of local structural defects or
impurities. Much theoretical effort has been made to
solve the problem of conductance with defects, mostly
with the tight-binding method [5,6]. Here, in order to
obtain the conductance taking into account the defect-
induced atomic relaxation and self-consistent electronic
redistribution properly, we have performed ab initio
nonlocal pseudopotential calculations. Substitutional im-
purities, Stone-Wales defects (pentagon-heptagon-pair
defects), and vacancies are studied. We find that the
ab initio results are sometimes quite different from the
simple one-p-orbital tight-binding calculations. For
example, in the presence of a vacancy, the position of the
conductance dip is shifted in energy by a large amount
and, more importantly, there exists more than one dip
with different physical origins unlike the predictions of
the p-orbital tight-binding model. We find that in general
the reduction of the conductance by a defect is itself
quantized. This phenomenon will be explained in terms
of a resonant backscattering by quasibound defect states
of a definite parity.

An �n, n� (armchair-type) carbon nanotube is a metallic
nanowire with two linear electronic energy bands which
cross at the Fermi level (EF) and contribute two conduc-
tance quanta ��4e2�h� to the conductance when the tube
is defectless [2]. In this work, we consider a �10, 10�
0031-9007�00�84(13)�2917(4)$15.00
carbon nanotube with different local defects and calcu-
late its intrinsic conductance [7] with an ab initio non-
local pseudopotential method. The supercell of 10 20 Å
in each dimension is used to calculate the perturbed poten-
tial (by a defect) self-consistently which is in general of
short range. The electronic wave functions are calculated
using the wave function matching method [8] throughout
an infinitely long tube with a defective region at the cen-
ter. The cutoff energy for the plane-wave expansion of the
wave function is 35 Ry and the atomic positions are relaxed
according to calculated forces. Conductance is obtained
from the multichannel extension of the Landauer formal-
ism [9], G�E� � G0 Tr�tyt�, where t is the transmission
matrix.

The calculated conductance of a �10, 10� carbon nano-
tube with a boron impurity is presented in Fig. 1. A
feature of immediate interest is that the conductance is
virtually unchanged at EF for a neutral nanotube �EF �
0�; that is, the impurity potential does not scatter incoming
electrons at this energy. On the other hand, we observe two
dips in conductance below EF . The amount of the reduc-
tion at the upper dip is 1 G0 and its shape is approximately
Lorentzian in agreement with the scattering wave analysis
using the Green’s function method [10]. In fact, the overall
structures of the conductance may be well described by a
superposition of two Lorentzian dips with a depth of 1 G0
each. The upper dip is caused by an approximate half re-
flection from states of both of the conducting bands, 47%
of the p band and 53% of the p� band. Because a single
impurity breaks the mirror symmetry planes containing the
tube axis [11], an eigenchannel [12] is a mixture of the p

and p� bands. An electron in an eigenchannel here is ei-
ther completely reflected or completely transmitted.

Associated with the two conductance dips, the local den-
sity of states (LDOS) around the boron impurity shows
two peaks arising from the presence of quasibound states
(Fig. 1). The lower peak is too close �&1 meV� to be seen
© 2000 The American Physical Society 2917
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FIG. 1. Effects of the boron substitutional impurity on con-
ductance in the �10, 10� carbon nanotube. The conductance as
a function of the incident energy E shows two dips. The lo-
cal density of states (LDOS) and the scattering phase shifts of
the two eigenchannels show peaks (indicated by arrows) and
rapid changes, respectively, associated with the dips in the con-
ductance. The charge density contour plot shows the electronic
state at 20.70 eV incident from the left and totally reflected by
the quasibound state at the energy. The horizontal axis is along
the tube axis and the vertical axis is along the circumference.

separately from the peak originating from the van Hove
singularity of the lower subbands. The spatial extent of the
quasibound state at the upper energy peak is approximately
10 Å (right panel of Fig. 1) and that at the lower-energy
peak is roughly 200 Å (not shown). While a perfect tube
has mirror planes perpendicular to the tube axis as well as
parallel to it, the substitution of a boron atom preserves
only one mirror plane containing the boron atom and per-
pendicular to the tube axis. The two quasibound states
are parity eigenstates with respect to this mirror plane; the
lower one (narrower peak) has odd parity and the upper
one (broader peak) has even parity. A propagating state
along the tube may be expressed as a sum of 50% of an
even state and 50% of an odd state converging onto the im-
purity. The even component may be scattered (i.e., phase
shifted) by the quasibound state of even parity only and the
odd component by that of odd parity only. We calculate
the phase shift for each parity component for a particular
eigenchannel using the expression

u �
1
2

Im log Det�S� , (1)

where S is the scattering matrix [13]. For the eigenchannel
that is reflected by the lower quasibound state (channel 1),
the phase of the odd parity component changes rapidly as
the energy sweeps past the lower quasibound state level,
and its value passes through p�2 at the peak of the quasi-
bound state as in Fig. 1. The phase of the even component
of this channel is unchanged and not shown. Total reflec-
tion occurs by a destructive interference between the even
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and the odd component. A similar change occurs to the
phase of the even parity component of the other eigen-
channel (channel 2) that is reflected by the upper quasi-
bound state. The total phase shift across a quasibound
state is p in each case in agreement with the Friedel sum
rule [13,14]. Figure 1 shows the charge density for the to-
tally reflected state at 20.7 eV. Note that the total charge
density does not look symmetric with respect to the mir-
ror plane because the incoming electronic wave function
from the left has been added to the mirror symmetric quasi-
bound state.

A nitrogen substitutional impurity has similar effects on
conductance, but with its energy structures opposite to the
boron case. Figure 2 shows two conductance dips above
the Fermi level. The LDOS near the nitrogen impurity
shows two peaks corresponding to quasibound states. The
upper peak is not well separated from that originating from
the van Hove singularity of the upper subbands. The spa-
tial extent of the wave functions is &10 Å at the lower
energy peak and �50 Å at the upper energy peak (not
shown). The lower quasibound state has even parity with
respect to the mirror plane and the upper one has odd par-
ity. The phase of the scattering matrix changes rapidly as
the energy sweeps past a bound state level as in boron.

The quasibound states in the metallic nanotube with
boron or nitrogen impurities have a similar physical origin
to that of acceptor or donor levels in typical semiconduc-
tors or semiconducting nanotubes [15]. The quasibound
levels associated with boron are close to the first lower
subband (and derived mainly from it) analogous to the ac-
ceptor level in semiconductors except that they are in reso-
nance with the continuum of conducting states. Among
the two quasibound states, the one with the larger binding

FIG. 2. Effects of the nitrogen substitutional impurity on con-
ductance in the �10, 10� carbon nanotube. The conductance, the
LDOS, and the scattering phase shifts of the two eigenchannels
are plotted as in Fig. 1. The contour plot shows the totally re-
flected state at 0.53 eV.
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energy (in the hole language) located at 0.1 eV above the
first lower subband has even parity and is relatively well
localized �&10 Å�, reminiscent of an s-like acceptor level.
The lower state with a much smaller binding energy has
odd parity with a huge spatial extent (�200 Å), a one-
dimensional analog of the p-like acceptor level. Likewise,
the quasibound states associated with the nitrogen impu-
rity behave similarly to the donor states in semiconductors.

With a Stone-Wales defect, the conductance has two dips
as shown in Fig. 3. Again, the dips are located away from
EF and the conductance close to EF is not significantly
affected by the defect. Our results thus show that the
conductance of the metallic �n, n� tube at EF is quite robust
with respect to intratube local defects. The amount of the
conductance reduction at the two dips is very close to 1 G0.
In this case, the lower dip is due to an almost complete
reflection of the p� band, whereas the upper dip is due
to that of the p band. The pentagon-heptagon-pair defect
studied here preserves, in addition to the mirror symmetry
plane �M1� perpendicular to the tube axis which exists with
a single impurity, another mirror plane �M2� containing
the tube axis. With respect to M2, the p band state in
the perfect tube is even and the p� band state is odd.
Therefore, the p and p� bands do not mix and remain
as eigenchannels in this defective tube.

The LDOS near the pentagon-heptagon-pair defect in
Fig. 3 shows two peaks at the energies corresponding to the
conductance dips characteristic of two quasibound states at
the defect. The lower quasibound state is odd with respect
to M2 (i.e., it is a p� state) but even with respect to M1,
while the upper quasibound state is even with respect to
M2 (i.e., a p state) but odd with respect to M1. The

FIG. 3. Effects of the pentagon-heptagon-pair defect on con-
ductance in the �10, 10� carbon nanotube. The conductance, the
LDOS, and the scattering phase shifts of the two eigenchan-
nels are plotted as in Fig. 1. The contour plots show the totally
reflected states at 20.78 eV (top right) and 0.43 eV (bottom
right), respectively.
labeling of the parity (even or odd) for the phase shift in
Fig. 3 is with respect to M1 as in the previous figures. We
note that, if the pentagon-heptagon-pair bonds are tilted
with respect to the tube axis, parity should be defined with
respect to a 180± rotation.

Another type of the structural defect of interest in car-
bon nanotubes is the vacancies. With a point (single-atom)
vacancy, the conductance shows one broad dip and two
very narrow dips as shown in Fig. 4(a). The reduction of
conductance at the broad dip is 1 G0 with approximately
half reflection of both p and p� bands as in the cases
for the B and N impurities. The location of the broad
dip in the present ab initio calculation (20.4 eV with re-
spect to EF) is quite different from the result of the widely
used tight-binding model that considers only one p elec-
tron per carbon atom perpendicular to the tube surface.
The tight-binding model predicts a single dip exactly at
the Fermi level [5]. However, electron-hole symmetry is
no longer valid in the realistic calculation, and the dip posi-
tion moves. Moreover, we find two other narrow dips near
EF not found in the tight-binding model. The narrow dips
originate from resonant scattering by quasibound states de-
rived from the broken s bonds around the vacancy. The
s bonds between the removed atom and its neighbors are
broken, and dangling bonds are produced which are mainly
composed of p orbitals parallel to the tube surface. Since
s-bond states are orthogonal to the p valence band states,
there is very little coupling between them. Among three
quasibound states derived from three dangling bonds, one
is an s-like bonding state which lies well below the first
lower subband (outside the scope of the figure). The other
two states are orthogonal to it (i.e., partially antibonding)
and give rise to two narrow dips in the figure. Because
the interaction among the dangling s bonds causes a sub-
stantial atomic relaxation and there can be more than one
metastable atomic configuration near the vacancy, the pre-
cise position of the vacancy-related quasibound state levels
may depend on various factors such as tube size, presence
of the multiwalls, and preparation conditions.

In the case of the double vacancy produced by remov-
ing two neighboring atoms, the conductance shows four
dips as shown in Fig. 4(b). Because the double vacancy
considered here preserves the mirror plane containing the
tube axis as in the case of the Stone-Wales defect, the p
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FIG. 4. Conductance of the �10, 10� carbon nanotube with
(a) a point vacancy or (b) a double vacancy.
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and p� bands are not mixed. All four dips correspond to
almost complete reflection of either one of the p or p�

bands. The two very narrow dips, which are not found in
the one p-orbital tight-binding model, are related to the
dangling s-bond states around the vacancy as in the case
of the point vacancy.

In conclusion, we have performed first-principles calcu-
lations of conductance for metallic carbon nanotubes with
substitutional impurities or structural defects, and arrived
at a detailed understanding of the conducting behavior with
these local defects. A substitutional boron or nitrogen im-
purity produces quasibound states of definite parity made
of p orbitals perpendicular to the tube surface below or
above EF in close analogy to the acceptor or donor lev-
els in semiconductors and the conductance is reduced at
the corresponding quasibound state energies. A pentagon-
heptagon-pair defect also produces two quasibound states
and reduces the conductance by one quantum unit at the
corresponding energies. In the case of a vacancy, va-
lence electrons suffer resonant backscattering by quasi-
bound states derived from the broken s-bond states as well
as the perturbed p states.
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